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We examine the effects of vacancy defects on thermal conductivity in bulk crystalline silicon (c-Si) using
nonequilibrium molecular dynamics simulations. While most vacancies are thought to remain in the form of
clusters in bulk c-Si, recent theoretical studies have predicted that small vacancy clusters energetically prefer to be
fourfold coordinated by nullifying dangling bonds. Hence, in this work, we consider three different-sized fourfold
vacancy clusters, tetra- (V4), hexa- (V6), and dodeca-vacancy (V12), with particular interest in studying how phonon
transport is affected by vacancy concentration and cluster size in association with fourfold coordination-induced
lattice distortions. Our simulations show that thermal conductivity (κ) rapidly drops with vacancy concentration
(nv) with an inverse power-law relation (κ ∝ n−α

v , with α ≈ 0.7–1.1 depending on cluster size); the presence of
1.5% vacancies leads to a 95% reduction in κ as compared to the defect free c-Si. When nv is low (<1%), the
reduction of κ with nv appears to be a function of cluster size, and the size effect becomes unimportant as nv

increases above 1%. We discuss the correlation between phone scattering and cluster size, based on the relative
rates of phonon-vacancy scattering associated with defect-induced strain fields. We also estimate the dependence
of phonon mean free path on vacancy concentration and cluster size.

DOI: 10.1103/PhysRevB.83.125202 PACS number(s): 65.40.−b

I. INTRODUCTION

With the ever-growing demand for renewable energy, there
has been great interest in thermoelectric energy conversion
that turns waste heat into electrical energy.1–4 In addition,
thermoelectric cooling appears to be a promising approach for
thermal management in small electronic and optoelectronic
systems,5–7 and the technology can be useful for temperature
control of satellites and space probes.8 The efficiency of
thermoelectric devices is measured by the figure of merit (ZT),
which is defined in dimensionless form as ZT = S2σT/κ ,
where T is the absolute temperature, S the Seebeck coefficient,
and σ and κ refer to the electrical conductivity and the thermal
conductivity, respectively.9 Over the past few years, significant
improvements in thermoelectric efficiency have been made by
mostly lowering thermal conductivity, yet thermoelectrics are
still too expensive and inefficient to compete with conventional
power generators.

Recently there have been several attempts to utilize
Si-based materials, while compound semiconductors have
been widely used for thermoelectrics.10–12 Si is more abundant,
safer, and cheaper than compound semiconductors and also
has well-established low-cost process technology, making it
attractive for thermoelectric applications. However, bulk c-Si
is well known to be inefficient as a thermoelectric material
because of its high κ; the ZT value of bulk c-Si is on the
order of 0.01 at room temperature.13 Recent studies1,2,14–16

have evidenced that Si nanopore and nanowire structures
exhibit a drastic reduction in κ , thereby leading to enhanced
ZT values. In addition, the lattice thermal conductivity of
semiconductors can be reduced in the presence of vacancy
defects17–21; however detailed quantitative analysis of the
defect effect in c-Si has not yet been reported.

In this work, we investigate how the presence of
vacancy defects affects the thermal conductivity in c-Si using
nonequilibrium molecular dynamics simulations. In bulk c-
Si, mono- and divacancies are likely mobile even at room

temperature,22,23 and thus most vacancies have been thought
to remain in the form of clusters or complexes with other
defects and impurities. According to very recent theoretical
studies,24,25 small vacancy clusters (Vn, 3 � n � 48) tend to
be fourfold coordinated by nullifying dangling bonds created
by Si lattice atom removal; in this size regime, the bond
energy gain by fourfold coordination is predicted to exceed
the strain energy increase via consequent lattice distortions.
Unlike pointlike defects, phonon scattering due to vacancy
clusters would be a function of not only vacancy concentration
but also cluster size.26 Particularly, the fourfold coordination of
vacancy defects can cause significant lattice distortions around
them, which could play an important role in impeding phonon
transport. The present study intends to examine the role played
by fourfold vacancy clusters in scattering of high-frequency
acoustic phonons in bulk c-Si, particularly the concentration
and size effects, using three different-sized clusters (V4, V6,
and V12 as illustrated in Fig. 1). The fundamental findings
obtained from this paper will assist in better understanding
the influence of vacancy defects on Si thermal conductivity,
which would be necessary to achieve enhanced thermoelectric
properties through defect engineering.

II. COMPUTATIONAL METHODS

Thermal conductivity that refers to the ability of matter
to conduct heat is given, according to Fourier’s law, byJ =
−κdT /dz, where J is the steady-state heat flux and dT/dz
is the temperature gradient. Classical molecular dynamics
simulations have been widely employed to estimate the ther-
mal conductivity of semiconductor materials. Nonequilibrium
molecular dynamics (NEMD),27–29 also called the direct
method, is analogous to an experimental procedure, in which
the heat flux (or temperature gradient) is calculated from
the imposed temperature gradient (or heat flux). Equilibrium
molecular dynamics (EMD) with the popular Green-Kubo
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method17,30,31 relates heat current fluctuations to κ based on the
fluctuation-dissipation theorem.32 The Green-Kubo approach
generally requires a higher computational cost than NEMD,
which tends to be its major drawback.

(a) Nonequilibrium molecular dynamics. In this paper, we
used NEMD where the temperature gradient was obtained
from the imposed heat flux. In the NEMD simulations, we
employed the Tersoff bond-order potential33 for tetrahedrally
bonded Si, as implemented in the large-scale atomic/molecular
massively parallel simulator (LAMMPS).34 To induce heat flow,
we define a heat sink and a heat source in each simulation
cell. The velocity vectors of the hottest atom in the heat sink
and the coldest atom in the heat source are interchanged (if the
hottest atom has a higher kinetic energy than the coldest atom).
The unphysical energy transfer (from the cold region to the hot
region) leads to a heat flow in the opposite direction by thermal
conduction. At steady state, both fluxes are equal in magnitude,
and the total heat flux is obtained from the sum of the kinetic
energies transferred. As such, the thermal conductivity (κ) of
a given system is then calculated by

κ = − J

(dT /dz)
= −

∑
swaps (m/2)

(
v2

hot − v2
cold

)
2tA(dT /dz)

, (1)

where vhot and vcold refer to the velocities of the atoms
involved in the energy exchange in the cold and hot segments,
respectively, t is the simulation time, A is the cross-sectional
area perpendicular to the heat-flow direction, and dT/dz is the
temperature gradient in the longitudinal direction (z direction).
The factor of 2 in the denominator indicates that heat flows in
two directions due to the periodic boundary condition imposed
in the z direction (see Fig. 2).

(b) Simulation cell construction. As model defects, we
adopted stable fourfold-coordinated tetra- (V4), hexa- (V6),
and dodeca-vacancy (V12) clusters from the previous work of
Lee and Hwang24; the predicted lowest-energy configurations
of the vacancy clusters are shown in Fig. 1. The fourfold-
coordinated structures remained stable during MD simulations
at 300 K, which is not surprising considering that all Si atoms
are fourfold coordinated with no significant distortions. The
predicted formation energies (per vacancy) of 2.04, 1.53,
and 1.15 eV using the Tersoff potential are close to the
density functional theory (DFT) values of 1.88, 1.62, and 1.16
eV for V4, V6, and V12, respectively. This implies that the
empirical potential can describe reasonably well the structure
and energetics of fourfold-coordinated vacancy defects where
the bond lengths and bond angles insignificantly deviate from
their equilibrium values.

For each simulation cell, V4, V6, or V12 clusters at a
given concentration were randomly embedded in the middle
layers, which are separated from the heat sink and source
layers by 5.4313-nm-thick buffer layers, as illustrated in
Fig. 2. As such, the periodic simulation cell consists of heat
source and sink layers (indicated as SH and SC , respectively),
two vacancy-embedded intermediate (I) layers, and two
buffer (B) layers. Because there is velocity switching-induced
nonphysical phonon scattering in the heat source and heat
sink segments,35,36 it might be necessary to place vacancy
defects outside those regions to better assess phonon transport
in the defective structures without the unphysical scattering

FIG. 1. Minimum energy configurations of fourfold tetra- (V4),
hexa- (V6), and dodeca-vacancy (V12) clusters considered in this
paper. Wire frame represents the bulk Si lattice, and spheres represent
highly strained atoms due to the fourfold coordination of the
neighboring atoms around the vacancies.

contribution. In addition, we assured that linear temperature
gradients were established in the vacancy-embedded layers by
adjusting the length of buffer layers (in which temperature
profiles were frequently highly nonlinear).

For all simulation cells, fixed lattice constants of 5.4313 Å
along 〈100〉 and 3.8405 Å along 〈110〉 were used for c-Si,
as obtained from volume optimization with the Tersoff
potential. The cross section of each simulation cell consists
of 10 × 10 units (corresponding to 3.8405 × 3.8405 nm2 or
400 atoms). The thickness of the heat source and heat sink
layers is LS = 5.4313 Å (corresponding to one unit in the
axial direction or 400 atoms), and the each buffer layer
thickness is set to LB = 54.313 Å (corresponding to 10 units
or 4000 atoms). The axial length of the vacancy-embedded
intermediate layer varies from LI = 21.7252, 43.4504, and
65.1756 to 86.9008 nm (corresponding to 40, 80, 120, and 160

125202-2



EFFECTS OF VACANCY DEFECTS ON THERMAL . . . PHYSICAL REVIEW B 83, 125202 (2011)

FIG. 2. Schematic illustration of the three-dimensional periodic
simulation cell that consists of heat source (SH ), heat ink (SC), buffer
(B), and intermediate (I ) layers; corresponding layer thicknesses (LS ,
LB , LI ) are also shown. Vacancy clusters are randomly embedded
only in the intermediate (I ) layers to avoid the influence of velocity
switching-induced nonphysical phonon scattering in the heat source
and sink regions. Heat flows in two directions due to the periodic
boundary condition imposed in the 〈100〉 direction, as indicated.

units, respectively, in the 〈100〉 direction). Periodic boundary
conditions are imposed in the x, y, and z directions, while heat
conduction occurs in the z direction.

(c) NEMD determination and quantum correction of k.
For each system, we performed ten independent NEMD
simulations with different initial velocity distributions; the
system was initially equilibrated at 300 K within the NVT
ensemble with a Nosé-Hoover thermostat for 100 picoseconds
(ps), followed by 2000 ps of constant energy (NVE) MD while
imposing a heat flux and measuring the ensuing temperature
gradient. A time step of 1 femtosecond (fs) was adopted for
all MD simulations reported herein. Here, care should be
taken that the frequency of velocity swaps is such that the
temperature profiles of the system are linear in the intermediate
regions, so as to obey Fourier’s law. A lower swapping
frequency, or a smaller heat flux, may be preferable, but a
higher swapping frequency may lead to faster equilibration
and in turn improved computational efficiency. Several careful
test runs showed that a swap interval of once every 100 MD
steps can be sufficient to provide reasonable results for all
cases examined. In our simulations, each temperature profile
was obtained by averaging over 105 MD steps (100 ps) after
equilibrium was reached.

In the MD approach, the temperature is commonly cal-
culated from the velocities of constituent atoms based on
the equipartition theorem of classical statistical mechanics,
3
2NkBTMD = 1

2

∑N
i=1 mv2

i , where N is the number of atoms in
a chosen region (one unit or shell here), kB is the Boltzmann
constant, vi is the velocity of atom i, and m is the atomic mass.
However, because the system temperature of 300 K is below
the Si Debye temperature (=645 K),37 quantum corrections
to the MD temperature (TMD) and thermal conductivity (κMD)
are necessary. By assuming that the total system energy is
the mean kinetic energy at TMD and equals the total phonon
energy at a quantum temperature T, the quantum correction can
be 〈E〉 = 3NkBTMD = ∫ ωD

0 D(ω)( 1
2 + 1

exp(h̄ω/κBT )−1 )h̄ω dω,
where D(ω) is the phonon density of states for all acoustic
branches, ω is the phonon frequency, and the 1/2 in the
phonon energy term represents the effect of zero-point energy.
Here, the phonon occupation number is described in terms
of the Planck distribution function ( 1

exp(h̄ω/κBT )−1 ). From
J = −κMD

dTMD
dz

= −κ dT
dz

, the corrected thermal conductivity

is estimated to be κ = κMD
dTMD
dT

. In this work, all quantum
corrections were made based on the experimental value of
Debye temperature (= 645 K). The correction factor derived
from the Debye temperature for the Tersoff potential38 would
be different to a certain degree; however, the quantum
correction based on the experimental value should be sufficient
for assessment of the defect size and concentration effect on the
thermal conductivity as the same correction factor is applied
to all simulation results.

(d) Cell size dependence of k. In the direct method, the
predicted thermal conductivity is a function of simulation
cell length. If the axial length of the simulation cell is not
sufficiently longer than the mean free path of phonons in the
system, phonon scattering in the heat sink and heat source
regions may inhibit thermal conduction and consequently
lower thermal conductivity.35,36 The finite-size effect is often
unavoidable if a finite-size simulation cell is employed in
determination of bulk thermal conductivities. This dependency
can be removed by extrapolating the simulation results with
various finite-size cells to the infinite system. According to
Schelling et al.,39 the relationship between size-dependent
thermal conductivity and simulation cell length (Ltot = 2Lz,
where Lz is the distance between the heat source and heat
sink centers, which is half of the total simulation cell length)
is given by 1

κ
∝ ( 1

l∞
+ 2

Lz
), where l∞ is the phone mean free

path for the infinite system. From linear extrapolation with
a set of calculated (1/Lz,1/κ) values to 1/Lz = 0, we can
approximate the bulk thermal conductivity.

This method, on the basis of Matthiessen’s rule, assumes
that the inverse of the effective phonon mean free path (leff)
can be obtained by adding the inverses of the bulk phonon
mean free path (leff) and the boundary scattering contribution
(in a finite system), i.e., 1

leff
= 1

l∞
+ 2

Lz
. The factor of 2 in

the boundary scattering term accounts for the mean scattering
distance of phonons traveling from the heat source to the
heat sink. According to the simple kinetic theory, κ = 1

3Cvvl,
where Cv is the specific heat per unit volume, v is the group
velocity, and l is the mean free path, the thermal resistivity
(1/k) is given by

1

κ
=

(
1

κ∞
+ α

Lz

)
, (2)

where α is a size-independent constant (= 6/Cvv).
For the composite simulation cell employed in this work,

the overall thermal resistivity equals the length-weighted av-
erage resistivity, κ−1

eff = [(2LB + LS)/Lz]κ
−1
B + (LI/Lz)κ

−1
I ,

from J = −κeff
�T
Lz

= −κS
�TS

LS
= −κB

�TB

LB
= −κI

�TI

LI
, where

�T = �TS + �TB + �TI and κS = κB . The effective con-
ductivity is rewritten as

κe = κBκI

κI δB + κBδI

, (3)

where δB = (2LB + LS)/Lz and δI = LI/Lz = 1 − δB . Sub-
stituting Eq. (3) into Eq. (2), we obtain

1

κeff
= 1

κB

δB + 1

κI

δI =
(

1

κ∞
+ α

2LB + LS + LI

)
. (4)
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If LI � 2LB + LS (or δB ≈ 0 and δI ≈ 1), the thermal
conductivity of the composite cell (keff) can be assumed to
be equal to that of the vacancy-embedded matrix (kI ). Thus,
we can evaluate the contribution of phonon-vacancy scattering
to bulk thermal conductivity by extrapolating a corresponding
1/keff vs 1/Lz plot to Lz → ∞ (or 1/Lz → 0).

III. RESULTS AND DISCUSSION

For reference sake, first we calculated κ for bulk c-Si at
300 K by extrapolating the simulation results with various
finite-size cells to the infinite system. Because the defect-free
c-Si system has higher κ (i.e., a smaller intercept in the
1/κ vs 1/Lz plot) than other defected systems, a relatively
longer simulation cell is needed for more precise extrapolation.
Within the composite cell scheme, the intermediate layer
thickness (LI ) was varied from 21.7252, 43.4504, 65.1756,
and 86.9008 to 130.3512 nm (corresponding to 40, 80, 120,
160, and 240 units, respectively, in the 〈100〉 direction), while
the thicknesses of the heat source (and heat sink) and buffer
layers were fixed at LS = 5.4313 Å and LB = 54.313 Å,
respectively.

The insets of Fig. 3 show two examples of the temperature
profiles from the longest and shortest simulation cells, which
clearly demonstrate that the temperature profiles in the
intermediate layers (hatched) are well fitted to linear functions
while they are virtually symmetric about the center of the heat
source (or sink) layer. This advocates that heat conduction in
the intermediate layers obeys Fourier’s law with no significant
interference from the heat source and heat sink, and it also
occurs symmetrically in the simulation domain.

In Fig. 3, calculated 1/κ values are plotted as a func-
tion of 1/Lz, exhibiting a linear pattern. From a standard
least-squares linear regression, the slope and intercept of

FIG. 3. Thermal resistivity (1/κ , with quantum correction) for
defect-free Si as a function of simulation cell length at 300 K. Lz is
the distance between the centers of the heat source and sink layers,
which is half of the total simulation cell length (Ltot). Insets show MD
temperature (TMD) profiles as a function of axial position (z) from the
longest and shortest simulation cells, exhibiting linear temperature
gradients in the intermediate layers (hatched), as represented by thin
solid lines. In the insets, SH ,SC,B, and I indicate the heat source, heat
sink, buffer, and intermediate layers, respectively.

FIG. 4. MD temperature (TMD) profiles sampled from the V12-
embedded defective systems of four different vacancy concen-
trations, nv = 0.15%, 0.6%, 0.9%, and 1.5%. Data are from the
simulation cell consisting of 10×10×122 units (corresponding
to 3.8405×3.8405×65.1756 nm3) and the sample temperature of
300 K. All profiles exhibit linear temperature gradients in the
intermediate layers (hatched), as represented by thin solid lines.
SH ,SC,B, and I indicate the heat source, heat sink, buffer, and
intermediate layers, respectively.

the 1/κ vs 1/Lz plot are estimated to be 2.56×10−9 m2

K/W and 0.0028 mK/W, respectively. From the intercept,
the κ is predicted to be 235.71 ± 7.53 W m−1 K−1 (be-
fore quantum correction = 357.14 ± 11.41 W m−1 K−1)
considerably overestimated compared with the experimental
value of 156 W m−1 K−1 (Ref. 40). This discrepancy could
be attributed to the tendency of the Tersoff potential to
describe the Si structure somewhat rigid.16 Taking the slope
and intercept values, we also estimated the bulk phonon
mean free path by l∞ = [slope]/[2×intercept]; the predicted
value of 228.991 ± 10.521 nm is comparable to 300 nm as
experimentally estimated.41,42

Next, we examined how the presence of vacancy defects
affects thermal conductivity. For each defect type, we con-
sidered four different vacancy concentrations (nv = 0.15%,
0.6%, 0.9%, and 1.5%). Figure 4 shows selected time-averaged
temperature profiles that were used to compute κ for V12 at
nv = 0.15%, 0.6%, 0.9%, and 1.5%. All of the temperature
profiles are fitted by linear functions (represented by solid
lines) in the vacancy-embedded intermediate layers, although
strong nonlinear profiles are shown in the buffer layers,
particularly near the heat source and heat sink layers. This
confirms that the defective regions are not affected by the
unphysical scattering associated with velocity swapping.

Figure 5 shows predicted κ values as a function of vacancy
concentration for V4, V6, and V12. As nv increases, κ rapidly
decreases; the presence of 1.5% vacancies leads to a 95%
reduction in κ (13.20 ± 0.33, 10.65 ± 0.23, and 10.60 ±
0.20 W m−1 K−1 for the V12, V6, and V4 cases, respectively), as
compared to the defect-free c-Si (235.71 ± 7.53 W m−1 K−1).
Even for nv= 0.15%, phonon transport tends to be significantly
impeded as κ drops by over 60% (175.35 ± 24.2, 98.99 ± 8.17,
and 87.42 ± 9.84 W m−1 K−1 for the V12, V6, and V4 cases).
Note that at nv= 0.15% there are only two V12, four V6,
or six V4 clusters in the 10×10×40 simulation cell (16000
atoms). The large standard deviation of κ at low-vacancy
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FIG. 5. Calculated bulk thermal conductivities at 300 K (with
quantum correction) as a function of vacancy concentration for the
V4-, V6-, and V12-embedded Si systems. In the upper panels, selected
cross-section wireframe views along the heat flow (or 〈100〉) direction
are also shown for two different vacancy concentrations.

concentrations (especially when nv= 0.15%) is due to the fact
that the heat transfer from the source to the sink is strongly
affected by the location of vacancy clusters. As the number
of clusters increases, the standard deviation decreases with a
well-converged κ value.

Figure 5 also shows a nonlinear decay of κ with nv . The
calculated values are well fitted with an inverse power-law
relation, κ ∝ n−α

v , with α = 1.04, 0.87, and 0.74, respectively,
for the V12, V6, and V4 cases. The nonlinear relation between
κ and nv has also been reported for carbon materials such
as carbon nanotubes19 and diamond.20 The exponent α is a
measure of how rapidly κ drops with increasing nv; that is, a
smaller exponent implies a steeper decrease of κ . According
to our results, smaller clusters would more effectively inhibit
phonon transport for the same vacancy concentration.

It is worth noting that the reduction of κ with nv is
a function of cluster size particularly when nv is low. To
understand the correlation between phone scattering and
cluster size, we approximated the rate of phonon-vacancy
scattering in the vacancy-embedded region; here, the rate of
phonon scattering due to vacancy aggregates is, according
to previous studies,27,43 given by τ−1 = cnπd2

e /4, where c
is the phonon group velocity, n is the number density of
vacancy clusters, and de is the effective diameter assuming
each cluster has a spherical shape. Suppose c is insignificantly
affected by cluster size, the normalized scattering rate for
V6 or V12 with respect to V4 can be approximated by
γVN

= τ−1
VN

/τ−1
V4

= nVN
d2

e,Vn
/nV4d

2
e,V4

(N = 6 or 12). Here, the

effective diameters were estimated based on defect-induced
strain fields. For each vacancy cluster, we first counted
the number of strained Si atoms that have strain energy
higher than a given cutoff value, and then calculated the
volume of a corresponding sphere which can accommodate
the strained and vacant atoms in the c-Si lattice. With the
volume, the corresponding effective diameter was calculated
by de = (6V/π )1/3. For cutoff strain energies of 0.02–0.2 eV,
the effective diameters are roughly estimated to be 13.35–7.72
Å, 15.02–8.14 Å, and 17.01–8.70 Å for V4, V6, and V12,
respectively. Taking the average values of the diameters (as the
energy cutoff is rather arbitrary), γV6 and γV12 are approximated
to be 0.75 ± 0.05 and 0.59 ± 0.09, respectively, at nv = 0.15%.
The increase of scattering rate with decreasing cluster size
unequivocally supports our simulation results showing that a
smaller cluster size leads to a more rapid reduction in κ for
the same vacancy concentration. We admit that this approach
would be oversimplified, but should be physically sound and
sufficient for approximation of the scattering rate variation
with cluster size, considering that phonon scattering is, to a
large extent, determined by defect-induced lattice distortions.
The cluster-size dependence of κ becomes insignificant as
the density of vacancy clusters increases. When nv = 1.5%,
κ is virtually no longer a function of cluster size. This is
likely related to the fact that the projected areas of clusters
in the heat-flow direction largely overlap and nearly cover
the heat-flow cross section, as illustrated in Fig. 4. Note that
phonons travel in straight lines from the source to the sink;
the transport of most of the phonons could be blocked if the
cross section is covered by vacancy clusters, and thus phonon
transport becomes rather insensitive to the cluster size.

Finally, we estimated how the phonon mean free path is
affected by vacancy concentration and cluster size. Figure 6
shows the normalized phonon mean free paths for various
vacancy-embedded systems with respect to the bulk value (λ =
l/ lc−Si). The normalized mean free paths rapidly decrease with
nv; at nv = 1.5% the predicted values are 0.1202 ± 0.0046,
0.0913 ± 0.0039, and 0.0846 ± 0.0038 for the V12, V6, and
V4 cases, respectively. Similar to the thermal conductivity

FIG. 6. Calculated phonon mean free paths at 300 K as a function
of vacancy concentration for the V4-, V6-, and V12-embedded Si
systems. Inset shows a correlation between thermal conductivity and
phonon mean free path; both κ and l rapidly decrease with nv .
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variation (see Fig. 4), the results are also well fitted to an
inverse power-law relation, l ∝ n−β

v , with β = 0.67, 0.76, and
1.38 for the V4, V6, and V12 cases, respectively. In addition,
the inset clearly shows that there is a direct correlation
between thermal conductivity and phonon mean free path,
consistent with the kinetic theory (κ∝ l). In undoped (or
lightly doped) semiconductors, heat is transported primarily by
lattice vibrations (phonons) at moderate temperatures (where
the effect of radiation is negligible).44 Likewise, electronic
and radiative contributions can be ignored in the c-Si system
considered; therefore, the mean free path of phonons is an
important indicator regarding how effectively thermal energy
is carried through the model Si structures.

IV. SUMMARY

Nonequilibrium molecular dynamics simulations based on
the Tersoff potential were performed to examine the effect of
vacancy defects on the thermal conductivity (κ) of c-Si. For
reference sake, we first calculated κ for bulk c-Si at 300 K by
extrapolating the simulation results with various finite-size
cells to the infinite system; the predicted κ is 235.71 ±
7.53 W m−1 K−1 (before quantum correction = 357.14 ±
11.41 W m−1 K−1), which tends to be overestimated com-
pared with the experimental value of 156 W m−1 K−1. κ

rapidly decreases with increasing vacancy concentration (nv)
with an inverse power-law relation (κ ∝ n−α

v ); the fitted
α values are 1.04, 0.87, and 0.74, respectively, for the
V12, V6, and V4 cases. According to the results, κ drops

to 13.20 ± 0.33 (175.35 ± 24.2), 10.65 ± 0.23 (98.99 ± 8.17),
and 10.60 ± 0.20 (87.42 ± 9.84) W m−1 K−1 in the presence
of fourfold V12, V6, and V4 clusters, respectively, at nv = 1.5%
(0.15%). Our calculations also suggest that the reduction of
κ with nv is a function of cluster size particularly when nv is
low; smaller clusters tend to more effectively inhibit phonon
transport for the same vacancy concentration. We attempt to
explain the cluster-size dependence based on effective cluster
diameters for phonon scattering, which were estimated from
defect-induced strain fields. When nv is much greater than
1%, we also find that κ is virtually no longer a function
of cluster size because the projected areas of clusters in
the heat-flow direction overlap and fully cover the heat-flow
cross section. Phonon mean free paths were also estimated by
varying vacancy concentration and cluster size; the results are
fitted to an inverse power-law relation, l ∝ n−β

v , with β = 0.67,
0.76, and 1.38 for the V4, V6, and V12 cases, respectively.
Our results also reinforce that the thermal conductivity is
directly proportional to the phonon mean free path (κ∝ l).
The improved understanding could offer insight into how to
enhance the thermoelectric properties of Si-based materials by
defect engineering.
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